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ABSTRACT 

An example is given of a ring R (with 1) satisfying the standard identity 
S~[x, . . . . .  x6] hut M2(R), the 2×2 matrix ring over R, does not satisfy 
S,2[x . . . . . .  x,2]. This is in contrast to the case R = M. (F), F a field, where by 
the Amitsur-Levitzki theorem R satisfies $2. [x,,. . . ,  x2. ] and M2(R ) satisfies 
S,.[x . . . . . .  x.]. 

§0. Introduction 

The  fundamen ta l  t h e o r e m  of  A m i t s u r - L e v i t z k i  s tates that  R = M,  (F),  the 

n x n matr ix  ring over  a c o m m u t a t i v e  ring F, satisfies the s tandard  po lynomia l  

ident i ty  $2, [xl . . . . .  x2, ] (e.g., [7, p. 21]). Consequen t ly  M2. ( F ) =  M d R  )satisfies 

the s tandard  ident i ty  S, ,[x ,  . . . . .  x4.]. This leads to the fol lowing natura l  

quest ion:  

Le t  R be a ring (1 E R )  satisfying $2, [x~ . . . . .  x2,], does  Mz(R)  =- (~ ~) satisfy 

S,.  [xi, .  • . ,  x , . ] ?  

Regev  [6, p. 506] ob ta ined  a posi t ive result  to an ana logous  ques t ion;  he shows 

THEOREM. Let R satisfy ck+~, the k + 1 Capelli polynomial. Then M2(R)  

satisfies c4~ +~. 

In fact he p roves  much  more :  If  S is any  Q - a l g e b r a  satisfying c~+~, then R @ S 

satisfies Cu+l. 

This  is an ana logous  result  since the minimal  Capell i  po lynomia l  which 

R = M.  (F)  satisfies is C.2+I; now replacing n by 2n will give c~2.)2+~ = c,,2+,, the 

min imal  Capel l i  which M2(R)  satisfies. 
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where  tr E Em-2. This is p roved  exact ly  as the ana logous  s t a t emen t  for  

Sm I x , , . . . ,  x,,] (e.g. [5], p. 16). ~,,~tx ,c,I-.o~, x~ 2), x3 . . . . .  xm] was first in t roduced  in [1] 

where  the fol lowing is p roved  ( T h e o r e m  1.15(i)). 

PROPOSITION 1. Let  R be an F-algebra, 1 ~ R,  and satisfying S~,. Suppose that 

for every m a x i m a l  ideal M in R,  R / M  does not satisfy S2t, 3), where n >= 6 and 

char  F ~  2, 5. Then R is A z u m a y a .  I f  r a n k ( R / M )  = k 2 for every m a x i m a l  ideal M 

in R,  then r a n k ( R ) =  k 2. 

The  next  l e m m a  is a technical  result  we use, the p roof  of which we pos tpone  to 

the end.  

LEMMA 2. Let  F be a commuta t ive  ring and M2(F) be the 2 x 2 matrix ring 

over F. Then S*[x ,  . . . .  ,x6] vanishes on M2(F).  

We shall use N ( R )  for  the nil radical  of R and Md ( R )  for the d x d matr ices  

ove r  R. 

PROPOSITION 3. Let  R be a finite d imensional  F algebra, 1 ~ R,  such that 

R / N ( R  ) = M~ (F)  and satisfying N ( R  )3 = {0}. Then R satisfies Sm Ix, . . . . .  x,, ] 

provided R / N ( R  ) satisfies , .  v) ~t2) v S , . l x ,  , . , x , , ] .  

PROOF. By the W e d e r b u r n  principal  t h e o r e m  R -~ A ~ N ( R ) ,  where  A 

Md (F).  Also by [2, p. 54] N ( R  ) = N a @ v A ,  where  N A = {n E N ( R  )I na = an, 

a E A }. Consequen t ly  R = Md (F  0 N a ) = Md (F)  @~ (F 0 N A ). 

We shall p rove  that  S,. Ix, . . . . .  x,,] = 0. By the l ineari ty of S,, [x~ . . . . .  x,,] we 

may  assume that  x~ = a~c~ where  a~ ~ A, and c~ E F or c~ E N A, i = 1 . . . . .  m. If 

c,, ce, c~ E N a for  some  three  indices, then N 3= {0} implies the vanishing of 

S. ,[x,  . . . . .  x,.] = 0 .  Suppose  that  two of the indices c, ,c~ are in N A, say il = 1, 

i2 = 2, Thus ,  by (1) 

S , . [ x , , . . .  , x, .] = S *'-~'~,.:, , xT~,x~. . . . . .  x , , l -  ¢ .  f~c,~ "-' -, v -  ~ , - ' , : ~ , x ~  . . . . .  x , , ]  

= . ~ c * f ~ o '  ~2) . . , c , , a m l _ c 2 c , S , [ a ~ , ~ , . ~ )  . . t .  l t , 2 ~ J m [ ¢ ~ l  , t ~ 2  ~ c 3 0 3 ~ ,  . . ,,i , ~3,,3, . . . , cmam ] 

= 0  

where  the last equal i ty  holds since .¢* i-~') ~t~) - o , . t~ ,  ,~2 , .~3 , . . . , x , . ]  vanishes on A, and 

observ ing  that  x~ = a~c~ ~ A for  i = 3 . . . . .  m. If only one  of the c~'s is in N a, e.g. 

i = 1, then,  x~ ~ A for  i = 2 . . . .  , m and consequen t ly  

S . [ x ,  . . . . .  x , . ] =  S . [ c , a , , c : a ~  . . . .  , c . a . ] =  c ,S , [a , , c~a~  . . . . .  c,.a,.] = 0, 

¢ ,  [~o) .~2~ , Xm ] vanishes on A and by where  the last equal i ty  holds since ~ , . t "  ~ , .,2 , x3 , . . .  
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(1) so does S,, [x, . . . . .  x,,]. Finally if c~ . . . . .  c,, are all in A, then x~ . . . . .  x,, are in 

A and the previous reasoning holds. 

We shall now prove, using Theorem 2, our main result. 

THEOREM 4. There exists a ring R, 1 ~ R, satisfying the standard identity 
S6[xt . . . . .  x6] but M,_(R ), the 2 x 2 matrix over R, does not satisfy S~,_ [x, . . . . .  x,:]. 

PROOF. Let C be a finite dimensional algebra over a field F (char F ¢  2,5), 

satisfying the following properties. 

(i) 1 E C, C is not commutative. 

(ii) N ( C )  3--- {0}, N(C)'-¢ {0}, and N(C) is the unique maximal ideal of C. 

(iii) C/N(C)~- F. 
It is an easy exercise to produce such a C. Let R = M2(C). We have 

R = M,_(F) @F C. Observe that 

(N(C) N(C)~ 
N(R) = M~(N(C))= \N(C)  N(C)] " 

Consequently N ( R ) : =  {0}. Also R/N(R)~-M,_(F)and therefore satisfying 

S6[xt* ('), x(_, "-), x3 . . . .  , x~]. Now Proposition 3 implies that R satisfies S6[xt . . . . .  x6]. 
We shall now show that M2(R) does not satisfy Sl,_[x~ . . . . .  x~.,]. Indeed N(R)  

being the unique maximal ideal of R, implies that M,_(R) has a unique maximal 

ideal 

(N(R)  N(R)~ 
M2(N(R )) = \N(R  ) N(R )] = N(M2(R )), 

and M,_(R )[M,(N(R)) - M4(F). 
Suppose that M2(R) satisfies Slz[xl . . . . .  x~2]. Then by Proposition 1 (n = 6) 

and the previous isomorphism, M2(R) is an Azumaya algebra of constant rank 
42. Consequently, R is an Azumaya algebra of constant rank 4. This implies by 

[3, p. 160] that C is commutative, a contradiction. 

PROOF OF LEMMA 2. Given xt . . . . .  x6 in M2(F) we may assume, by the 

o,f_(,) ~(2) x6], that xi is a basis element for i = 1, . .  ,6. linearity of o 61 x ~ , ,.2 , x3, x4, xs, 

Also by (3) if xi = xj for i ~ j  and i,j>3= then o6[ .~l¢*r'0),-2"(2),x3,..., X 6 ] = 0 .  

Moreover (3) implies that if S*[x~ ~), x~ 2), x3, x4, xs, x6] = 0 for some choice of x3, 
x4, x5, x6 then ¢*rv(l) (2) r...1 6L.a,l , X2 , Xo-(3), Xo-(4), Xa,(5), Xo-(6)] = 0 ,  for every permutation ~r. 

Consequently we need only check that o6t~c*r'°),x~2),e..e~2, e2,,1] = 0 

(e . ,  et2, en, 1 is a basis for M2(F)). 
Finally, as for the usual standard identity (e.g., [7, p. 103, Ex. 1.2(3)]), one has 
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S*rx<l) x ~2) , 1 ] - - 0 ,  in  part icular  that for e v e r y  e v e n  m, - t  i , 2 , x 3 , . . .  x , - l ,  

s , r ~ m  ~(2) e21, 1] = 0. 6t.~I ,~2  ~ell~el2, 
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